Пусть исходные числа равны
и пусть суммы цифр, стоящих в разряде единиц и десятков, соответственно
и 
а) Решим систему уравнений:

Примером исходного набора чисел может быть 70 двузначных чисел, заканчивающихся единицей, сумма десятков которых дает 290. Например, это 68 чисел 41 и два числа 91 или 50 чисел 51 и 20 чисел 21. Ещё пример (его можно построить, обратив внимание, что сумма десятков примерно в 4 раза больше суммы единиц): 32 раза число 92 и число 26.
б) Решим систему уравнений:

Поскольку нулей в записи чисел нет, сумма цифр, стоящих в разряде единиц, не меньше количества чисел. Тем самым, чисел не больше 30. Но тогда сумма цифр, стоящих в разряде десятков, не может быть больше 270. Противоречие.
Иначе: поскольку в записи нет нулей, а цифры в разряде десятков не превышают 9, справедливы соотношения:
то есть
что противоречит полученной системе, в которой 
в) Требуется определить, для какого наименьшего S имеет решения система уравнений

Из полученной системы следует, что величина S кратна 9 и 11 то есть кратна 99. Тогда
Тогда

Наименьшему значению
соответствует наименьшее значение
причем из второго уравнения системы ясно, что
Улучшим оценку: заметим, что
откуда
тогда

и, тем самым, 
Если
то:
заданным набором чисел, например, являются 30 чисел 91, 9 чисел 21 и число 51, сумма чисел в наборе равна 
Ответ: а) например, 32 раза число 92 и число 26, б) нет, в) 693.